Integration of Non-Terrestrial Network for 5G IoT and Future 6G
Main Article Content
Keywords
NTN, UAV, Non-Terrestrial Network, NB-IoT, Satellite
Abstract
The exponential growth of the Internet of Things (IoT) has spurred the need for robust and extensive connectivity solutions. In response to the market and use-case requirements, the Third Generation Partnership Project (3GPP) introduced Narrowband IoT (NB-IoT). The latest NB-IoT integration with Non-Terrestrial Network (NTN) aims to bridge the coverage gaps in challenging terrains and address capacity issues in dense urban environments through the utilisation of satellites and Unmanned Aerial Vehicles (UAVs). This research paper explores the potential of NTN systems to complement and enhance the capabilities of 5G NB-IoT and 6G technologies. Through a combination of academic research and simulation, it seeks to evaluate the advantages of NTN, such as extended coverage and improved signal quality, for massive IoT device connectivity. Our simulation results demonstrate a trade-off between coverage and network capacity: while higher UAV altitudes provide extensive coverage by reaching more receivers, they also suffer from reduced signal strength and capacity due to increased path loss. This paper provides an overview of technical specifications and challenges related to NB-IoT and NTN, an assessment of NB-IoT NTN performance in a real-world scenario, and an analytical framework with simplified graphical representations for evaluating NTN integration into NB-IoT.
References
5G Americas. (2019, July). 5G: The Future of IoT [White paper]. https://www.5gamericas.org/wp-content/uploads/2019/07/5G_Americas_White_Paper_on_5G_IOT_FINAL_7.16.pdf
Abusabah, A. T., Rahman, M. A., Oliveira, R., & Flizikowski, A. (2022). The importance of repetitions in ultra-dense NB-IoT networks. IEEE Communications Letters, 26(5), 1199–1203. https://doi.org/10.1109/LCOMM.2022.3151324
Azari, M. M., Solanki, S., Chatzinotas, S., Kodheli, O., Sallouha, H., Colpaert, A., Montoya, J. F. M., Pollin, S., Haqiqatnejad, A., Mostaani, A. & Lagunas, E. (2022). Evolution of non-terrestrial networks from 5G to 6G: A survey. IEEE Communications Surveys & Tutorials, 24(4), 2633–2672. https://doi.org/10.1109/COMST.2022.3199901
C&T RF Antennas Inc. (2021, October 25). NB-IoT and LoRa of LPWAN market analysis in 2022. https://lcantennas.com/nb-iot-and-lora-of-lpwan-market-analysis-in-2021/
Chetlur, V. V., & Dhillon, H. S. (2017). Downlink coverage analysis for a finite 3-D wireless network of unmanned aerial vehicles. IEEE Transactions on Communications, 65(10), 4543–4558. https://doi.org/10.1109/TCOMM.2017.2722500
Cluzel, S., Franck, L., Radzik, J., Cazalens, S., Dervin, M., Baudoin, C., & Dragomirescu, D. (2018, June). 3GPP NB-IoT coverage extension using LEO satellites. In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring) (pp. 1–5). IEEE. https://doi.org/10.1109/VTC-Spring.2018.8417723
Conti, M., Andrenacci, S., Maturo, N., Chatzinotas, S., & Vanelli-Coralli, A. (2020, June). Doppler impact analysis for NB-IoT and satellite systems integration. In ICC 2020-2020 IEEE International Conference on Communications (ICC) (pp. 1–7). IEEE. https://doi.org/10.1109/ICC40277.2020.9149140
Domínguez-Bolaño, T., Campos, O., Barral, V., Escudero, C. J., & García-Naya, J. A. (2022). An overview of IoT architectures, technologies, and existing open-source projects. Internet of Things, 20, 100626. https://doi.org/10.1016/j.iot.2022.100626
Ericsson. (n.d.). Ericsson mobility visualizer. Retrieved September 18, 2023, from https://www.ericsson.com/en/reports-and-papers/mobility-report/mobility-visualizer
Gbadamosi, S. A., Hancke, G. P., & Abu-Mahfouz, A. M. (2020). Building upon NB-IoT networks: A roadmap towards 5G new radio networks. IEEE Access, 8, 188641–188672. https://doi.org/10.1109/AC-CESS.2020.3030653
Giuliano, R., & Innocenti, E. (2023). Machine learning techniques for non-terrestrial networks. Electronics, 12(3), 652. https://doi.org/10.3390/electronics12030652
Hao, C., Chen, Y., Mai, Z., Chen, G., & Yang, M. (2022). Joint optimization on trajectory, transmission and time for effective data acquisition in UAV-enabled IoT. IEEE Transactions on Vehicular Technology, 71(7), 7371–7384. https://doi.org/10.1109/TVT.2022.3166237
Kodheli, O., Maturo, N., Andrenacci, S., Chatzinotas, S., & Zimmer, F. (2019). Link budget analysis for satellite-based narrowband IoT systems. In Ad-Hoc, Mobile, and Wireless Networks: 18th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2019, Luxembourg, Luxembourg, October 1–3, 2019, Proceedings 18 (pp. 259–271). Springer International Publishing. https://doi.org/10.1007/978-3-030-31831-4_18
Liberg, O., Bergman, J., Höglund, A., Khan, T., Medina-Acosta, G. A., Rydén, H., Ratilainen, A., Sandberg, D., Sui, Y., Tirronen, T., & Wang, Y. E. (2019, September). Narrowband Internet of Things 5G Performance. In 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall) (pp. 1–5). IEEE. https://doi.org/10.1109/VTCFall.2019.8891588
Liberg, O., Löwenmark, S. E., Euler, S., Hofström, B., Khan, T., Lin, X., & Sedin, J. (2020). Narrowband Internet of Things for Non-Terrestrial Networks. IEEE Communications Standards Magazine, 4(4), 49–55. https://doi.org/10.1109/MCOMSTD.001.2000004
Liberg, O., Sundberg, M., Wang, E., Bergman, J., Sachs, J., & Wikström, G. (2019). Cellular Internet of Things: From Massive Deployments to Critical 5G Applications. Academic Press.
LightReading (2020, July 30). NB-IoT Officially Recognized as a 5G Standard, Driving IoT Development. Informa Tech. https://www.lightreading.com/iot/nb-iot-officially-recognized-as-a-5g-standard-driving-iot-development
Manzoor, B., Al-Hourani, A., & Al Homssi, B. (2022). Improving IoT-over-satellite connectivity using frame repetition technique. IEEE Wireless Communications Letters, 11(4), 736–740. https://doi.org/10.1109/LWC.2022.3141831
MathWorks (n.d.). Ray tracing propagation model. The MathWorks, Inc. Retrieved September 18, 2023, from https://au.mathworks.com/help/comm/ref/rfprop.raytracing.html
Merias, P. (2020). Study on Narrow-Band Internet of Things (NB-IoT)/enhanced Machine Type Communication (eMTC) support for Non-Terrestrial Networks (NTN). (3GPP Reference N0: 36.763, Rel-17). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3747
Meyer, D. (2023, June 1). What role will satellite play in the 5G? SDxCentral. https://www.sdxcentral.com/articles/analysis/what-role-will-satellite-play-in-the-5g-story/2023/06/
Pons, M., Valenzuela, E., Rodríguez, B., Nolazco-Flores, J. A., & Del-Valle-Soto, C. (2023). Utilization of 5G technologies in IoT applications: Current limitations by interference and network optimization difficulties—A review. Sensors, 23(8), 3876. https://doi.org/ 10.3390/s23083876
Rahimi, Z., Sobouti, M. J., Ghanbari, R., Seno, S. A. H., Mohajerzadeh, A. H., Ahmadi, H., & Yanikomeroglu, H. (2021). An efficient 3-D positioning approach to minimize required UAVs for IoT network coverage. IEEE Internet of Things Journal, 9(1), 558–571. https://doi.org/10.1109/JIOT.2021.3084521
Samir, M., Sharafeddine, S., Assi, C. M., Nguyen, T. M., & Ghrayeb, A. (2019). UAV trajectory planning for data collection from time-constrained IoT devices. IEEE Transactions on Wireless Communications, 19(1), 34–46. https://doi: 10.1109/TWC.2019.2940447
Sateliot. (n.d.). Everywhere connected. Retrieved September 18, 2023 from https://sateliot.space/
Sharma, L. (2021). NB-IoT for 5G: How 5G Aligns With NB-IoT. In S. K. Routray & S. Mohanty (eds), Principles and Applications of Narrowband Internet of Things (NBIoT) (pp. 352–372). IGI Global. https://doi.org/10.4018/978-1-7998-4775-5.ch015
Sobouti, M. J., Rahimi, Z., Mohajerzadeh, A. H., Seno, S. A. H., Ghanbari, R., Marquez-Barja, J. M., & Ahmadi, H. (2020). Efficient Deployment of Small Cell Base Stations Mounted on Unmanned Aerial Vehicles for the Internet of Things Infrastructure. IEEE Sensors Journal, 20(13), 7460–7471. https://doi.org/10.1109/JSEN.2020.2973320
Song, K., Zhang, J., Ji, Z., Jiang, J., & Li, C. (2020). Energy-efficiency for IoT system with cache-enabled fixed-wing UAV relay. IEEE Access, 8, 117503–117512. https://doi.org/10.1109/ACCESS.2020.3004843
Sørensen, R. B., Møller, H. K., & Koch, P. (2021). 5G NB-IoT via low density LEO Constellations. In 35th Annual Small Satellite Conference (pp. 1–9). https://doi.org/10.48550/arxiv.2108.06172
Sun, Z. (2014). Satellite networking: Principles and protocols. Chicheter, West Sussex, England: Wiley.
Tabbane, S. (2017, December). IoT Long Range Technologies: Standards. ITU. https://www.itu.int/en/ITU-D/Regional-presence/AsiaPacific/SiteAssets/Pages/Events/2017/Nov-IOT/NBTC–ITU-IoT/IoT-standards.pdf
Tsoukaneri, G., Condoluci, M., Mahmoodi, T., Dohler, M., & Marina, M. K. (2018). Group communications in narrowband-IoT: Architecture, procedures, and evaluation. IEEE Internet of Things Journal, 5(3), 1539–1549. https://doi.org/10.1109/JIOT.2018.2807619
Zayas, A. D., & Merino, P. (2017, May). The 3GPP NB-IoT system architecture for the Internet of Things. In 2017 IEEE International Conference on Communications Workshops (ICC Workshops) (pp. 277–282). IEEE. https://doi.org/10.1109/ICCW.2017.7962670
Zhou, H., Liu, L., & Ma, H. (2019, May). Coverage and capacity analysis of LEO satellite network supporting Internet of Things. In ICC 2019-2019 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE. https://doi.org/10.1109/ICC.2019.8761682