The 1-Millisecond Challenge – Tactile Internet: From Concept to Standardization

Main Article Content

Duc Tran Le https://orcid.org/0000-0003-3735-0314
Tri Gia Nguyen
Thi Thu Thao Tran

Keywords

Tactile Internet, Internet of Skills, Haptic Communication, 1-millisecond challenge, latency

Abstract

In recent years, Tactile Internet (TI) has become a familiar concept to humankind. It is expected to have the potential to create many new opportunities and applications that reshape our life and economy. However, the biggest challenge for recognizing the TI – the “1-millisecond challenge” remains unchanged, and it requires additional research efforts. In this paper, we will dissect what has been done and what needs to be done for the “TI ecosystem”. We will also investigate the TI concept from the perspective of the “network latency evolution”, as well as analyzing the architecture and the emerging technologies, which are needed to meet the strict requirements of the TI.

Downloads

Download data is not yet available.
Abstract 994 | 240-PDF-v8n2pp56-93 Downloads 23

References

Ahmed, E., & Rehmani, M. H. (2017). Mobile Edge Computing: Opportunities, solutions, and challenges. Future Generation Computer Systems, 70, 59–63. http://doi.org/10.1016/j.future.2016.09.015
Aijaz, A. (2016). Towards 5G-enabled Tactile Internet: Radio resource allocation for haptic communications. 2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). http://doi.org/10.1109/wcncw.2016.7552690
Aijaz, A., Simsek, M., Dohler, M., & Fettweis, G. (2016). Shaping 5G for the Tactile Internet. 5G Mobile Communications, 677–691. http://doi.org/10.1007/978-3-319-34208-5_25
Aijaz, A., Dohler, M., Aghvami, A. H., Friderikos, V., & Frodigh, M. (2017). Realizing the Tactile Internet: Haptic Communications over Next Generation 5G Cellular Networks. IEEE Wireless Communications, 24(2), 82–89. ??http://doi.org/10.1109/mwc.2016.1500157rp
Aijaz, A., Dawy, Z., Pappas, N., Simsek, M., Oteafy, S., & Holland, O. (2018). Toward a tactile Internet reference architecture: Vision and progress of the IEEE P1918.1 standard. arXiv preprint arXiv:1807.11915.
Aijaz, A., & Sooriyabandara, M. (2019). The Tactile Internet for Industries: A Review. Proceedings of the IEEE, 107(2), 414–435. http://doi.org/10.1109/jproc.2018.2878265
Al Jaafreh, M., Alowaidi, M., Al Osman, H., & El Saddik, A. (2018). Multimodal Systems, Experiences, and Communications: A Review Toward the Tactile Internet Vision. Recent Trends in Computer Applications, 191–220. http://doi.org/10.1007/978-3-319-89914-5_12
Amadeo, M., Campolo, C., & Molinaro, A. (2012). Enhancing IEEE 802.11p/WAVE to provide infotainment applications in VANETs. Ad Hoc Networks, 10(2), 253–269. http://doi.org/10.1016/j.adhoc.2010.09.013
Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., & Zhang, J. C. (2014). What Will 5G Be. IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082. http://doi.org/10.1109/JSAC.2014.2328098
Antonakoglou, K., Xu, X., Steinbach, E., Mahmoodi, T., & Dohler, M. (2018). Toward Haptic Communications Over the 5G Tactile Internet. IEEE Communications Surveys & Tutorials, 20(4), 3034–3059. http://doi.org/10.1109/comst.2018.2851452
Arata, J., Takahashi, H., Pitakwatchara, P., Warisawa, S., Tanoue, K., Konishi, S., Ieiri, S., Shimizu, N., Nakashima, K., Okamura, Y., Fujino, Y., Ueda, P., Chotiwan, M., Mitsuishi, M., Hashizume (2007). A remote surgery experiment between Japan and Thailand over Internet using a low latency CODEC system. Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, 953-959. http://doi.org/10.1109/robot.2007.363108
Ateya, A. A., Vybornova, A., Muthanna, A., Markova, E., Gudkova, I., Gogol, A., & Koucheryavy, A. (2018). Key solutions for light limitations. Proceedings of the 2nd International Conference on Future Networks and Distributed Systems - ICFNDS ’18. http://doi.org/10.1145/3231053.3231125
Ateya, A., Muthanna, A., Gudkova, I., Abuarqoub, A., Vybornova, A. & Koucheryavy, A. (2018). Development of intelligent core network for Tactile Internet and future smart systems. Journal of Sensor and Actuator Networks, 7(1), 1.
Athmiya, N. S., Shobha, K. R., & Sarimela, V. (2016). Feasibility study and implementation of openflow based SDN controller for tactical scenario. 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). http://doi.org/10.1109/rteict.2016.7807934
Bachhuber, C., & Steinbach, E. (2017). Are today's video communication solutions ready for the tactile internet?. In 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 1-6. ??https://doi.org/10.1109/wcncw.2017.7919060
Bainbridge, R., & Paradiso, J. A. (2011). Wireless Hand Gesture Capture through Wearable Passive Tag Sensing. 2011 International Conference on Body Sensor Networks, 200–204. http://doi.org/10.1109/bsn.2011.42
Baldi, T. L., Scheggi, S., Meli, L., Mohammadi, M., & Prattichizzo, D. (2017). GESTO: A Glove for Enhanced Sensing and Touching Based on Inertial and Magnetic Sensors for Hand Tracking and Cutaneous Feedback. IEEE Transactions on Human-Machine Systems, 47(6), 1066–1076. http://doi.org/10.1109/thms.2017.2720667
Basdogan, C., Ho, C.-H., Srinivasan, M. A., & Slater, M. (2000). An experimental study on the role of touch in shared virtual environments. ACM Transactions on Computer-Human Interaction, 7(4), 443–460. http://doi.org/10.1145/365058.365082
Bennis, M., Debbah, M., & Poor, H. V. (2018). Ultrareliable and Low-Latency Wireless Communication: Tail, Risk, and Scale. Proceedings of the IEEE, 106(10), 1834–1853. http://doi.org/10.1109/jproc.2018.2867029
Bermejo, C., & Hui, P. (2017). A survey on haptic technologies for mobile augmented reality. ArXiv Preprint ArXiv:1709.00698.
Bojkovic, Z. S., Bakmaz, B. M., & Bakmaz, M. R. (2017). Vision and enabling technologies of tactile internet realization. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS). http://doi.org/10.1109/telsks.2017.8246242
Braun, P. J., Pandi, S., Schmoll, R.-S., & Fitzek, F. H. P. (2017). On the study and deployment of mobile edge cloud for tactile Internet using a 5G gaming application. 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), 154-159. http://doi.org/10.1109/ccnc.2017.7983098
Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology. John Wiley & Sons.
Cabrera, J. A., Schmoll, R.-S., Nguyen, G. T., Pandi, S., & Fitzek, F. H. P. (2019). Softwarization and Network Coding in the Mobile Edge Cloud for the Tactile Internet. Proceedings of the IEEE, 107(2), 350–363. http://doi.org/10.1109/jproc.2018.2869320
Cakuli, J. (2016). Application scenarios, research challenges and standardization for Tactile Internet. Master’s thesis, International Hellenic University, Thessaloniki, Greece.
Cao, H. (2017). What is the next innovation after the internet of things?. arXiv preprint arXiv:1708.07160.
Ceselli, A., Premoli, M., & Secci, S. (2017). Mobile Edge Cloud Network Design Optimization. IEEE/ACM Transactions on Networking, 25(3), 1818–1831. http://doi.org/10.1109/tnet.2017.2652850
Chaudhari, R., Schuwerk, C., Danaei, M., & Steinbach, E. (2015). Perceptual and Bitrate-Scalable Coding of Haptic Surface Texture Signals. IEEE Journal of Selected Topics in Signal Processing, 9(3), 462–473. http://doi.org/10.1109/jstsp.2014.2374574
Chen, K.-C., Zhang, T., Gitlin, R. D., & Fettweis, G. (2019). Ultra-Low Latency Mobile Networking. IEEE Network, 33(2), 181–187. http://doi.org/10.1109/mnet.2018.1800011
Cisco Visual Networking Index. (2016). Global mobile data traffic forecast update, 2016-2021 White Paper. (Accessed 17.07.2018)
Citrin, A. V., Stem, D. E., Spangenberg, E. R., & Clark, M. J. (2003). Consumer need for tactile input: An internet retailing challenge. Journal of Business Research, 56(11), 915–922. http://doi.org/10.1016/s0148-2963(01)00278-8
Cizmeci, B., Chaudhari, R., Xu, X., Alt, N., & Steinbach, E. (2014). A Visual-Haptic Multiplexing Scheme for Teleoperation Over Constant-Bitrate Communication Links. Lecture Notes in Computer Science, 131–138. http://doi.org/10.1007/978-3-662-44196-1_17
Cizmeci, B., Xu, X., Chaudhari, R., Bachhuber, C., Alt, N., & Steinbach, E. (2017). A Multiplexing Scheme for Multimodal Teleoperation. ACM Transactions on Multimedia Computing, Communications, and Applications, 13(2), 1–28. http://doi.org/10.1145/3063594
Cunha, F., Villas, L., Boukerche, A., Maia, G., Viana, A., Mini, R. A. F., & Loureiro, A. A. F. (2016). Data communication in VANETs: Protocols, applications and challenges. Ad Hoc Networks, 44, 90–103. http://doi.org/10.1016/j.adhoc.2016.02.017
D’Ursol, F., Grasso, C., Santoro, C., Santoro, F. F., & Schembra, G. (2018). The Tactile Internet for the flight control of UAV flocks. 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft). http://doi.org/10.1109/netsoft.2018.8458493
Dipietro, L., Sabatini, A. M., & Dario, P. (2008). A Survey of Glove-Based Systems and Their Applications. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(4), 461–482. http://doi.org/10.1109/tsmcc.2008.923862
Dohler, M. (2015). The Tactile Internet IoT, 5G and Cloud on Steroids. 5G Radio Technology Seminar. Exploring Technical Challenges in the Emerging 5G Ecosystem. http://doi.org/10.1049/ic.2015.0029
Dohler, M. Mahmoodi, T., Lema, M. A., Condoluci, M., Sardis, F., Antonakoglou, K., & Aghvami, H. (2017). Internet of skills, where robotics meets AI, 5G and the Tactile Internet. 2017 European Conference on Networks and Communications (EuCNC). http://doi.org/10.1109/eucnc.2017.7980645
Dressler, F., Klingler, F., Segata, M., & Cigno, R. L. (2019). Cooperative Driving and the Tactile Internet. Proceedings of the IEEE, 107(2), 436–446. http://doi.org/10.1109/jproc.2018.2863026
Duc, L. T., Simonina, O., Buinevich, M., & Vladyko, A. (2018). A multi-criteria priority-based V2I communication for information dissemination at RSU in VANET. JP Journal of Heat and Mass Transfer, SV2018(2), 195–203. http://doi.org/10.17654/hmsi218195
Durisi, G., Koch, T., & Popovski, P. (2016). Toward Massive, Ultrareliable, and Low-Latency Wireless Communication With Short Packets. Proceedings of the IEEE, 104(9), 1711–1726. http://doi.org/10.1109/jproc.2016.2537298
Eid, M., Cha, J., & El Saddik, A. (2011). Admux: An Adaptive Multiplexer for Haptic–Audio–Visual Data Communication. IEEE Transactions on Instrumentation and Measurement, 60(1), 21–31. http://doi.org/10.1109/tim.2010.2065530
Elbamby, M. S., Perfecto, C., Bennis, M., & Doppler, K. (2018). Toward Low-Latency and Ultra-Reliable Virtual Reality. IEEE Network, 32(2), 78–84. http://doi.org/10.1109/mnet.2018.1700268
Elhajj, I., Xi, N., Wai Keung Fung, Yun Hui Liu, Li, W. J., Kaga, T., & Fukuda, T. (2001). Haptic information in Internet-based teleoperation. IEEE/ASME Transactions on Mechatronics, 6(3), 295–304. http://doi.org/10.1109/3516.951367
Ericsson (2013). LTE for utilities – Supporting smart grids. White Paper, UEN 285 23-3208.
ETSI (2017). IPv6-based Tactile Internet. International Telecommunication Union (ITU), Group Specification GR IP6 0014.
Faheem, M., Shah, S. B. H., Butt, R. A., Raza, B., Anwar, M., Ashraf, M. W., Ngadi, Md. A., & Gungor, V. C. (2018). Smart grid communication and information technologies in the perspective of Industry 4.0: Opportunities and challenges. Computer Science Review, 30, 1–30. http://doi.org/10.1016/j.cosrev.2018.08.001
Fang, X., Misra, S., Xue, G., & Yang, D. (2012). Smart Grid — The New and Improved Power Grid: A Survey. IEEE Communications Surveys & Tutorials, 14(4), 944–980. http://doi.org/10.1109/surv.2011.101911.00087
Farhady, H., Lee, H., & Nakao, A. (2015). Software-defined networking: A survey. Computer Networks, 81, 79-95. http://doi.org/10.1016/j.comnet.2015.02.014
Farhang, M., & Bizaki, H. K. (2020). Adaptive time-frequency multiplexing for 5G applications. AEU-International Journal of Electronics and Communications, 117, 153089. http://doi.org/10.1016/j.aeue.2020.153089
Farhoudi, M., Palantas, P., Abrishamchi, B., Mihailovic, A., & Aghvami, A. H. (2017). A novel reliable routing scheme for Tactile-oriented Internet traffic. 2017 24th International Conference on Telecommunications (ICT). http://doi.org/10.1109/ict.2017.7998248
Fettweis, G., Boche, H., Wiegand, T., Zielinski, E., Schotten, H., Merz, P., Hirche, S., Festag, A., Häffner, W., Meyer, M., & Steinbach, E. (2014). The Tactile Internet-ITU-T Technology Watch Report. International Telecommunication Union (ITU), Geneva. [Available Online]: https://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000230001PDFE.pdf (Accessed 07.05.2020)
Fettweis, G. P. (2014). The Tactile Internet: Applications and Challenges. IEEE Vehicular Technology Magazine, 9(1), 64–70. http://doi.org/10.1109/mvt.2013.2295069
Fettweis, G., & Alamouti, S. (2014). 5G: Personal mobile internet beyond what cellular did to telephony. IEEE Communications Magazine, 52(2), 140–145. http://doi.org/10.1109/mcom.2014.6736754
Foukas, X., Patounas, G., Elmokashfi, A., & Marina, M. K. (2017). Network Slicing in 5G: Survey and Challenges. IEEE Communications Magazine, 55(5), 94–100. http://doi.org/10.1109/mcom.2017.1600951
Fragouli, C., & Soljanin, E. (2008). Network coding applications. Foundations and Trends in Networking, 2(2), 135-269. http://doi.org/10.1561/1300000013
Gao, J., Xiao, Y., Liu, J., Liang, W., & Chen, C. L. P. (2012). A survey of communication/networking in Smart Grids. Future Generation Computer Systems, 28(2), 391–404. http://doi.org/10.1016/j.future.2011.04.014
Giannoulakis, I., Kafetzakis, E., Xylouris, G., Gardikis, G., & Kourtis, A. (2014). On the Applications of Efficient NFV Management Towards 5G Networking. Proceedings of the 1st International Conference on 5G for Ubiquitous Connectivity. http://doi.org/10.4108/icst.5gu.2014.258133
Girish, L., & Rao, S. K. N. (2016). Mathematical tools and methods for analysis of SDN: A comprehensive survey. 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I). http://doi.org/10.1109/ic3i.2016.7918055
Goldfarb, A. & Tucker, C. (2017). Digital economics. National Bureau of Economic Research, Technical Report. http://doi.org/10.3386/w23684
Grohmann, B., Spangenberg, E. R., & Sprott, D. E. (2007). The influence of tactile input on the evaluation of retail product offerings. Journal of Retailing, 83(2), 237–245. http://doi.org/10.1016/j.jretai.2006.09.001
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. http://doi.org/10.1016/j.future.2013.01.010
Haddadin, S., Johannsmeier, L., & Diaz Ledezma, F. (2019). Tactile Robots as a Central Embodiment of the Tactile Internet. Proceedings of the IEEE, 107(2), 471–487. http://doi.org/10.1109/jproc.2018.2879870
Han, B., Gopalakrishnan, V., Ji, L., & Lee, S. (2015). Network function virtualization: Challenges and opportunities for innovations. IEEE Communications Magazine, 53(2), 90–97. http://doi.org/10.1109/mcom.2015.7045396
Hany, U., Hossain, A. B. M. S., & Saha, P. K. (2010). QoS optimization and performance analysis of NGN. International Conference on Electrical & Computer Engineering (ICECE 2010). http://doi.org/10.1109/icelce.2010.5700704
Hinterseer, P., Hirche, S., Chaudhuri, S., Steinbach, E., & Buss, M. (2008). Perception-Based Data Reduction and Transmission of Haptic Data in Telepresence and Teleaction Systems. IEEE Transactions on Signal Processing, 56(2), 588–597. http://doi.org/10.1109/tsp.2007.906746
Ho, T., Medard, M., Koetter, R., Karger, D. R., Effros, M., Shi, J., & Leong, B. (2006). A Random Linear Network Coding Approach to Multicast. IEEE Transactions on Information Theory, 52(10), 4413–4430. http://doi.org/10.1109/tit.2006.881746
Hoshi, T., Takahashi, M., Iwamoto, T., & Shinoda, H. (2010). Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound. IEEE Transactions on Haptics, 3(3), 155–165. http://doi.org/10.1109/toh.2010.4
Hu, G., Tay, W., & Wen, Y. (2012). Cloud robotics: architecture, challenges and applications. IEEE Network, 26(3), 21–28. http://doi.org/10.1109/mnet.2012.6201212
Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., & Young, V. (2015). Mobile edge computing—A key technology towards 5G. ETSI white paper, 11(11), 1-16.
Huaimin, Wang, Bo, D., & Xu, J. (2018). Cloud Robotics: A Distributed Computing View. Symposium on Real-Time and Hybrid Systems, 231–245. http://doi.org/10.1007/978-3-030-01461-2_12
Huawei (2015). 5G: New air interface and radio access virtualization. White Paper. [Available Online]: https://www.huawei.com/minisite/has2015/img/5g_radio_whitepaper.pdf (Accessed 07.05.2020).
IEEE 1918.1 - Tactile Internet: Application scenarios, definitions and terminology, architecture, functions, and technical assumptions. IEEE. [Available Online]: https://standards.ieee.org/develop/project/1918.1.html (Accessed 18.08.2018)
ITU-T. (2015). Network performance objectives for IP-based services. ITU-T Recommendation Y.1541.
Jararweh, Y., Doulat, A., AlQudah, O., Ahmed, E., Al-Ayyoub, M., & Benkhelifa, E. (2016). The future of mobile cloud computing: Integrating cloudlets and Mobile Edge Computing. 2016 23rd International Conference on Telecommunications (ICT). http://doi.org/10.1109/ict.2016.7500486
Jastrebova, A., Vybornova, A., & Kirichek, R. (2016). Review the concept of the Tactile Internet and technology for its realization. Telecom IT, 4(4), 89.
Jiang, D., & Liu, G. (2016). An Overview of 5G Requirements. 5G Mobile Communications, 3–26. http://doi.org/10.1007/978-3-319-34208-5_1
Jiang, X., Shokri-Ghadikolaei, H., Fodor, G., Modiano, E., Pang, Z., Zorzi, M., & Fischione, C. (2019). Low-Latency Networking: Where Latency Lurks and How to Tame It. Proceedings of the IEEE, 107(2), 280–306. http://doi.org/10.1109/jproc.2018.2863960
Joshi, K., & Benson, T. (2016). Network function virtualization. IEEE Internet Computing, 20(6), 7-9. http://doi.org/10.1109/MIC.2016.112
Kamei, K., Nishio, S., Hagita, N., & Sato, M. (2012). Cloud networked robotics. IEEE Network, 26(3), 28–34. http://doi.org/10.1109/mnet.2012.6201213
Kehoe, B., Patil, S., Abbeel, P., & Goldberg, K. (2015). A Survey of Research on Cloud Robotics and Automation. IEEE Transactions on Automation Science and Engineering, 12(2), 398–409. http://doi.org/10.1109/tase.2014.2376492
Kim, H., & Feamster, N. (2013). Improving network management with software defined networking. IEEE Communications Magazine, 51(2), 114–119. http://doi.org/10.1109/mcom.2013.6461195
Kim, K. S., Kim, D.K., Chae, C.B., Choi, S., Ko, Y.C., Kim, J., Lim, Y.G., Yang, M., Kim, S., Lim, B., & Lee, K. (2019). Ultrareliable and Low-Latency Communication Techniques for Tactile Internet Services. Proceedings of the IEEE, 107(2), 376–393. http://doi.org/10.1109/jproc.2018.2868995
Kim, S. S. Y., Dohler, M., & Dasgupta, P. (2018). The Internet of Skills: use of fifth-generation telecommunications, haptics and artificial intelligence in robotic surgery. BJU International, 122(3), 356–358. http://doi.org/10.1111/bju.14388
Kimura, N., & Latifi, S. (2005). A survey on data compression in wireless sensor networks. International Conference on Information Technology: Coding and Computing (ITCC’05) - Volume II. http://doi.org/10.1109/itcc.2005.43
Koucheryavy, A., Paramonov, A. & Al-Naggar, I. (2013). Communication networks with low latency. Elektrosvyaz’, 12, 15–19.
Koucheryavy, A., & Vybornova, A. (2016). Tactile Internet. Proceedings of International Conference on Advanced Infotelecommunication ICAIT V, 6–11.
Koucheryavy, A., Makolkina, M., & Kirichek, R. (2016). Tactile Internet. Communication networks with ultra-low latency. Elektrosvyaz’, 1, 44–46.
Kreutz, D., Ramos, F. M. V., Esteves Verissimo, P., Esteve Rothenberg, C., Azodolmolky, S., & Uhlig, S. (2015). Software-Defined Networking: A Comprehensive Survey. Proceedings of the IEEE, 103(1), 14–76. http://doi.org/10.1109/jproc.2014.2371999
LaViola, J. J. (2000). A discussion of cybersickness in virtual environments. ACM SIGCHI Bulletin, 32(1), 47–56. http://doi.org/10.1145/333329.333344
Lee, J. D., McGehee, D. V., Brown, T. L., & Reyes, M. L. (2002). Collision Warning Timing, Driver Distraction, and Driver Response to Imminent Rear-End Collisions in a High-Fidelity Driving Simulator. Human Factors: The Journal of the Human Factors and Ergonomics Society, 44(2), 314–334. http://doi.org/10.1518/0018720024497844
Lema, M. A., Antonakoglou, K., Sardis, F., Sornkarn, N., Condoluci, M., Mahmoodi, T., & Dohler, M. (2017). 5G case study of Internet of Skills: Slicing the human senses. 2017 European Conference on Networks and Communications (EuCNC), 1–6. http://doi.org/10.1109/eucnc.2017.7980762
Li, C., Li, C.P., Hosseini, K., Lee, S.B., Jiang, J., Chen, W., Horn, G., Ji, T., Smee, J. E., & Li, J. (2019). 5G-Based Systems Design for Tactile Internet. Proceedings of the IEEE, 107(2), 307–324. http://doi.org/10.1109/jproc.2018.2864984
Li, D., Zhu, W., Duan, Y., & Fu, Z. (2006). Toward developing a tele-diagnosis system on fish disease. Artificial Intelligence in Theory and Practice, 445–454. http://doi.org/10.1007/978-0-387-34747-9_46
Li, Y., & Chen, M. (2015). Software-Defined Network Function Virtualization: A Survey. IEEE Access, 3, 2542–2553. http://doi.org/10.1109/ACCESS.2015.2499271
Liu, H., Eldarrat, F., Alqahtani, H., Reznik, A., de Foy, X., & Zhang, Y. (2018). Mobile Edge Cloud System: Architectures, Challenges, and Approaches. IEEE Systems Journal, 12(3), 2495–2508. http://doi.org/10.1109/jsyst.2017.2654119
Liu, S., Li, M., Xu, X., Steinbach, E., & Liu, Q. (2018). QoE-Driven Uplink Scheduling for Haptic Communications Over 5G Enabled Tactile Internet. 2018 IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE). http://doi.org/10.1109/have.2018.8547503
Lo, H. S., & Xie, S. Q. (2012). Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Medical Engineering & Physics, 34(3), 261–268. http://doi.org/10.1016/j.medengphy.2011.10.004
Lu, L., Chen, Y., Guo, W., Yang, H., Wu, Y., & Xing, S. (2015). Prototype for 5G new air interface technology SCMA and performance evaluation. China Communications, 12(Supplement), 38–48. http://doi.org/10.1109/cc.2015.7386169
Ma, Y., Mao, Z.-H., Jia, W., Li, C., Yang, J., & Sun, M. (2011). Magnetic Hand Tracking for Human-Computer Interface. IEEE Transactions on Magnetics, 47(5), 970–973. http://doi.org/10.1109/tmag.2010.2076401
Ma, Z., & Ben-Tzvi, P. (2015). RML Glove—An Exoskeleton Glove Mechanism With Haptics Feedback. IEEE/ASME Transactions on Mechatronics, 20(2), 641–652. http://doi.org/10.1109/tmech.2014.2305842
Mahmoodi, T., & Seetharaman, S. (2014). On using a SDN-based control plane in 5G mobile networks. Wireless World Research Forum, 32nd Meeting.
Maier, M., Chowdhury, M., Rimal, B. P., & Van, D. P. (2016). The tactile internet: vision, recent progress, and open challenges. IEEE Communications Magazine, 54(5), 138–145. http://doi.org/10.1109/mcom.2016.7470948
Maier, M., Ebrahimzadeh, A., & Chowdhury, M. (2018). The Tactile Internet: Automation or Augmentation of the Human? IEEE Access, 6, 41607–41618. http://doi.org/10.1109/access.2018.2861768
Majid, M. I., Aslam, T., Hashmi, A. M., Subzwari, D., & Siddiqui, B. (2020). Tactile Internet and the Remote Surgeon. Employing Recent Technologies for Improved Digital Governance, 290–316. http://doi.org/10.4018/978-1-7998-1851-9.ch015
Marcus, M. J. (2015). 5G and “IMT for 2020 and beyond” [Spectrum Policy and Regulatory Issues]. IEEE Wireless Communications, 22(4), 2–3. http://doi.org/10.1109/mwc.2015.7224717
Martinez, J., Martinez, D., Molina, J. P., Gonz´lez, P., & Garcia, A. (2011). Comparison of Force and Vibrotactile Feedback with Direct Stimulation for Texture Recognition. 2011 International Conference on Cyberworlds. http://doi.org/10.1109/cw.2011.23
Miao, Y., Jiang, Y., Peng, L., Hossain, M. S., & Muhammad, G. (2018). Telesurgery Robot Based on 5G Tactile Internet. Mobile Networks and Applications, 23(6), 1645–1654. http://doi.org/10.1007/s11036-018-1110-3
Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck, F., & Boutaba, R. (2016). Network Function Virtualization: State-of-the-Art and Research Challenges. IEEE Communications Surveys & Tutorials, 18(1), 236–262. http://doi.org/10.1109/comst.2015.2477041
Mondal, S., Ruan, L., & Wong, E. (2020). Remote human-to-machine distance emulation through AI-enhanced servers for tactile internet applications. Optical Fiber Communication Conference, M1A-6. http://doi.org/10.1364/ofc.2020.m1a.6
Morales, A. C., Aijaz, A., & Mahmoodi, T. (2015). Taming Mobility Management Functions in 5G: Handover Functionality as a Service (FaaS). 2015 IEEE Globecom Workshops (GC Wkshps). http://doi.org/10.1109/glocomw.2015.7414151
Mountaser, G., Mahmoodi, T., & Simeone, O. (2018). Reliable and Low-Latency Fronthaul for Tactile Internet Applications. IEEE Journal on Selected Areas in Communications, 36(11), 2455–2463. http://doi.org/10.1109/jsac.2018.2872299
Neaime, J.E. (2018). Tactile-capable optical cloud distribution networks. Ph.D. dissertation, American University of Beirut, Beirut, Lebanon.
NGMN Alliance (2015). 5G White Paper. Next Generation Mobile Networks, White Paper, 1–125.
Nikopour, H., & Baligh, H. (2013). Sparse code multiple access. 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 332–336. http://doi.org/10.1109/PIMRC.2013.6666156
Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Networks, 21(8), 2657–2676. http://doi.org/10.1007/s11276-015-0942-z
Ordonez-Lucena, J., Ameigeiras, P., Lopez, D., Ramos-Munoz, J. J., Lorca, J., & Folgueira, J. (2017). Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and Challenges. IEEE Communications Magazine, 55(5), 80–87. http://doi.org/10.1109/mcom.2017.1600935
Oteafy, S. M. A., & Hassanein, H. S. (2019). Leveraging Tactile Internet Cognizance and Operation via IoT and Edge Technologies. Proceedings of the IEEE, 107(2), 364–375. http://doi.org/10.1109/jproc.2018.2873577
Pilz, J., Mehlhose, M., Wirth, T., Wieruch, D., Holfeld, B., & Haustein, T. (2016). A Tactile Internet demonstration: 1ms ultra low delay for wireless communications towards 5G. 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 862–863. http://doi.org/10.1109/infcomw.2016.7562198
Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G. N., Schulz, J. K., Samimi, M., & Gutierrez, F. (2013). Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access, 1, 335–349. http://doi.org/10.1109/ACCESS.2013.2260813
Repperger, D. W., & Phillips, C. A. (2006). Haptic Devices and Interfaces. Wiley Encyclopedia of Biomedical Engineering. http://doi.org/10.1002/9780471740360.ebs0550
Rost, P., Mannweiler, C., Michalopoulos, D.S., Sartori, C., Sciancalepore, V., Sastry, N., Holland, O., Tayade, S., Han, B., Bega, D., & Aziz, D. (2017). Network Slicing to Enable Scalability and Flexibility in 5G Mobile Networks. IEEE Communications Magazine, 55(5), 72–79. http://doi.org/10.1109/mcom.2017.1600920
Ruan, L., Dias, M. P. I., & Wong, E. (2017). Towards Tactile Internet Capable E-Health: A Delay Performance Study of Downlink-Dominated SmartBANs. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. http://doi.org/10.1109/glocom.2017.8254493
Russell, S. J., & Norvig. P. (2009). Artificial Intelligence: A Modern Approach. Edinburgh Gate: Pearson Education Limited.
Sachs, J., Andersson, L. A. A., Araujo, J., Curescu, C., Lundsjo, J., Rune, G., & Wikstrom, G. (2019). Adaptive 5G Low-Latency Communication for Tactile Internet Services. Proceedings of the IEEE, 107(2), 325–349. http://doi.org/10.1109/jproc.2018.2864587
Salkintzis, A. (Ed.). (2004). Mobile Internet. Electrical Engineering & Applied Signal Processing Series. http://doi.org/10.1201/9780203499986
Sanfeliu, A., Hagita, N., & Saffiotti, A. (2008). Network robot systems. Robotics and Autonomous Systems, 56(10), 793–797. http:??//doi.org/10.1016/j.robot.2008.06.007
Satyanarayanan, M. (2017). The Emergence of Edge Computing. Computer, 50(1), 30–39. http://doi.org/10.1109/mc.2017.9
Shafigh, A. S., Glisic, S., & Lorenzo, B. (2017). Dynamic Network Slicing for Flexible Radio Access in Tactile Internet. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. http://doi.org/10.1109/glocom.2017.8254593
Shahabi, C., Ortega, A., & Kolahdouzan, M. R. (2002). A comparison of different haptic compression techniques. Proceedings IEEE International Conference on Multimedia and Expo, 1, 657–660. http://doi.org/10.1109/icme.2002.1035867
She, C., & Yang, C. (2016). Ensuring the Quality-of-Service of Tactile Internet. 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 1-5. http://doi.org/10.1109/vtcspring.2016.7504239
Shima, K., & Sato, R. (2017). A novel haptic device design based on somatosensory superimposed stimuli. Advanced Robotics, 31(3), 135–142. http://doi.org/10.1080/01691864.2016.1266093
Shull, P. B., & Damian, D. D. (2015). Haptic wearables as sensory replacement, sensory augmentation and trainer – a review. Journal of NeuroEngineering and Rehabilitation, 12(1). http://doi.org/10.1186/s12984-015-0055-z
Siano, P. (2014). Demand response and smart grids—A survey. Renewable and Sustainable Energy Reviews, 30, 461–478. http://doi.org/10.1016/j.rser.2013.10.022
Sikora, T. (1997). The MPEG-4 video standard verification model. IEEE Transactions on Circuits and Systems for Video Technology, 7(1), 19–31. http://doi.org/10.1109/76.554415
Simsek, M., Aijaz, A., Dohler, M., Sachs, J., & Fettweis, G. (2016). The 5G-Enabled Tactile Internet: Applications, requirements, and architecture. 2016 IEEE Wireless Communications and Networking Conference. http://doi.org/10.1109/wcnc.2016.7564647
Simsek, M., Aijaz, A., Dohler, M., Sachs, J., & Fettweis, G. (2016). 5G-Enabled Tactile Internet. IEEE Journal on Selected Areas in Communications, 34(3), 460–473. http://doi.org/10.1109/JSAC.2016.2525398
Simsek, M., Aijaz, A., Dohler, M., & Fettweis, G. (2017). 5G radio access for the Tactile Internet. Access, Fronthaul and Backhaul Networks for 5G & Beyond, 119–138. http://doi.org/10.1049/pbte074e_ch6
Spelmezan, D. (2012). An investigation into the use of tactile instructions in snowboarding. Proceedings of the 14th International Conference on Human-Computer Interaction with Mobile Devices and Services - MobileHCI’12. http://doi.org/10.1145/2371574.2371639
Steinbach, E., Hirche, S., Kammerl, J., Vittorias, I., & Chaudhari, R. (2011). Haptic Data Compression and Communication. IEEE Signal Processing Magazine, 28(1), 87–96. http://doi.org/10.1109/msp.2010.938753
Steinbach, E., Hirche, S., Ernst, M., Brandi, F., Chaudhari, R., Kammerl, J., & Vittorias, I. (2012). Haptic Communications. Proceedings of the IEEE. http://doi.org/10.1109/JPROC.2011.2182100
Steinbach, E., Strese, M., Eid, M., Liu, X., Bhardwaj, A., Liu, Q., Al-Ja’afreh, M., Mahmoodi, T., Hassen, R., El Saddik, A., & Holland, O. (2019). Haptic Codecs for the Tactile Internet. Proceedings of the IEEE, 107(2), 447–470. http://doi.org/10.1109/jproc.2018.2867835
Storer, J. A. (1987). Data compression: methods and theory. Computer Science Press, Inc.
Sukhmani, S., Sadeghi, M., Erol-Kantarci, M., & El Saddik, A. (2019). Edge Caching and Computing in 5G for Mobile AR/VR and Tactile Internet. IEEE MultiMedia, 26(1), 21–30. http://doi.org/10.1109/mmul.2018.2879591
Swindlehurst, A. L., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive MIMO: the next wireless revolution? IEEE Communications Magazine, 52(9), 56–62. http://doi.org/10.1109/mcom.2014.6894453
Szabo, D., Gulyas, A., Fitzek, F. H. P., & Lucani, D. E. (2015). Towards the Tactile Internet: Decreasing Communication Latency with Network Coding and Software Defined Networking. European Wireless 2015; Proceedings of 21th European Wireless Conference, 1–6.
Szymanski, T. H. (2017). Strengthening security and privacy in an ultra-dense green 5G Radio Access Network for the industrial and tactile Internet of Things. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). http://doi.org/10.1109/iwcmc.2017.7986322
Tong, L., Li, Y., & Gao, W. (2016). A hierarchical edge cloud architecture for mobile computing. IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications. http://doi.org/10.1109/infocom.2016.7524340
Tuballa, M. L., & Abundo, M. L. (2016). A review of the development of Smart Grid technologies. Renewable & Sustainable Energy Reviews, 59, 710–725. http://doi.org/10.1016/j.rser.2016.01.011
Umek, A., Tomaži?, S., & Kos, A. (2015). Wearable training system with real-time biofeedback and gesture user interface. Personal and Ubiquitous Computing, 19(7), 989–998. http://doi.org/10.1007/s00779-015-0886-4
Van Den Berg, D., Glans, R., De Koning, D., Kuipers, F. A., Lugtenburg, J., Polachan, K., Venkata, P. T., Singh, C., Turkovic, B., & Van Wijk, B. (2017). Challenges in Haptic Communications Over the Tactile Internet. IEEE Access, 5, 23502–23518. http://doi.org/10.1109/access.2017.2764181
Varghese, A., & Tandur, D. (2014). Wireless requirements and challenges in Industry 4.0. 2014 International Conference on Contemporary Computing and Informatics (IC3I), 634-638. http://doi.org/10.1109/ic3i.2014.7019732
Varsha, H. S., & Shashikala, K. P. (2017). The tactile Internet. 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), 419–422. http://doi.org/10.1109/ICIMIA.2017.7975649
Verbelen, T., Simoens, P., Turck, F. D., & Dhoedt, B. (2012). Cloudlets: bringing the cloud to the mobile user. Proceedings of the third ACM workshop on Mobile cloud computing and services, 29–36. http://doi.org/10.1145/2307849.2307858
Weber, P., Rueckert, E., Calandra, R., Peters, J., & Beckerle, P. (2016). A low-cost sensor glove with vibrotactile feedback and multiple finger joint and hand motion sensing for human-robot interaction. 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). http://doi.org/10.1109/roman.2016.7745096
Weiner, M., Jorgovanovic, M., Sahai, A., & Nikolie, B. (2014). Design of a low-latency, high-reliability wireless communication system for control applications. 2014 IEEE International Conference on Communications (ICC), 3829-3835. http://doi.org/10.1109/icc.2014.6883918
Whaiduzzaman, Md, Sookhak, M., Gani, A., & Buyya, R. (2014). A survey on vehicular cloud computing. Journal of Network and Computer Applications, 40, 325–344. http://doi.org/10.1016/j.jnca.2013.08.004
Wicker, S. B., & Bhargava, V. K. (1994). An introduction to Reed-Solomon codes. Reed-Solomon codes and their applications, IEEE, 1-16. http://doi.org/10.1109/9780470546345.ch1
Wollschlaeger, M., Sauter, T., & Jasperneite, J. (2017). The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Industrial Electronics Magazine, 11(1), 17–27. http://doi.org/10.1109/mie.2017.2649104
Wong, E., Dias, M. P. I., & Ruan, L. (2016). Tactile internet capable passive optical LAN for healthcare. 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS) 1–3).
Yilmaz, O. N. C., Wang, Y.-P. E., Johansson, N. A., Brahmi, N., Ashraf, S. A., & Sachs, J. (2015). Analysis of ultra-reliable and low-latency 5G communication for a factory automation use case. 2015 IEEE International Conference on Communication Workshop (ICCW). http://doi.org/10.1109/iccw.2015.7247339
Yorita, A., Hashimoto, T., Kobayashi, H., & Kubota, N. (2009). Remote Education Based on Robot Edutainment. Communications in Computer and Information Science, 204–213. http://doi.org/10.1007/978-3-642-03986-7_24
Yu, H., Afzal, M. K., Zikria, Y. B., Rachedi, A., & Fitzek, F. H. (2020). Tactile Internet: Technologies, test platforms, trials, and applications. Future Generation Computer Systems, 106, 685–688. http://doi.org/10.1016/j.future.2020.01.057
Yu, T., Wang, X., & Zhu, Y. (2019). Blockchain Technology for the 5G-Enabled Internet of Things Systems: Principle, Applications and Challenges. 5G-Enabled Internet of Things, 301–321. http://doi.org/10.1201/9780429199820-14
Yuan, Z., Ghinea, G., & Muntean, G.-M. (2015). Beyond Multimedia Adaptation: Quality of Experience-Aware Multi-Sensorial Media Delivery. IEEE Transactions on Multimedia, 17(1), 104–117. http://doi.org/10.1109/tmm.2014.2371240
Yuan, Z., Yu, G., & Li, W. (2015). Multi-user shared access for 5G. Telecommunication Network Technology, 5(5), 28-30.
Yuan, Z., Yu, G., Li, W., Yuan, Y., Wang, X., & Xu, J. (2016). Multi-User Shared Access for Internet of Things. 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring). http://doi.org/10.1109/vtcspring.2016.7504361
Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A.-H., & Leung, V. C. M. (2017). Network Slicing Based 5G and Future Mobile Networks: Mobility, Resource Management, and Challenges. IEEE Communications Magazine, 55(8), 138–145. http://doi.org/10.1109/mcom.2017.1600940
Zhang, N., Yang, P., Zhang, S., Chen, D., Zhuang, W., Liang, B., & Shen, X. S. (2017). Software Defined Networking Enabled Wireless Network Virtualization: Challenges and Solutions. IEEE Network, 31(5), 42–49. http://doi.org/10.1109/mnet.2017.1600248
Zhang, Q., Liu, J., & Zhao, G. (2018). Towards 5G enabled tactile robotic telesurgery. arXiv preprint arXiv:1803.03586.
Zhang, Z., Chai, X., Long, K., Vasilakos, A. V., & Hanzo, L. (2015). Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection. IEEE Communications Magazine, 53(5), 128–137. http://doi.org/10.1109/mcom.2015.7105651