SBM-SA: A Safety Beacon Message Separation Algorithm for Privacy Protection in Internet of Vehicles

Main Article Content

Zheng Jiang https://orcid.org/0000-0001-6332-2128
Fang-Fang Chua https://orcid.org/0000-0003-4114-1320
Amy Hui-Lan Lim https://orcid.org/0000-0001-9343-9167

Keywords

Internet of Vehicles (IoV), privacy protection, safety beacon message (SBM)

Abstract

A safety beacon message (SBM) plays a pivotal role in the Internet of Vehicles (IoV), broadcasting crucial events and road conditions to nearby vehicles. Given the sensitive nature of the data, such as vehicle identity and location, ensuring privacy is paramount. The significance of this research lies in addressing the pressing need for comprehensive privacy protection in the IoV, especially as most existing schemes focus on safeguarding either vehicle identity or location data during exchanges with core servers. The primary objective of this article is to introduce an SBM separation algorithm, termed SBM-SA, designed to holistically protect both identity and location data. Utilising correlation analysis, the SBM-SA stands as an innovative anonymisation privacy algorithm. Through a simulated IoV environment, the accuracy and efficacy of an SBM-SA are meticulously analysed and juxtaposed against prevailing privacy protection schemes. The findings underscore the SBM-SA’s potential to significantly enhance privacy measures in the IoV. Implications of this research extend to shaping future privacy protection strategies of the SBM, emphasising the need for holistic and robust solutions in an increasingly interconnected vehicular landscape.


 

Downloads

Download data is not yet available.
Abstract 333 | 767-PDF-v11n4pp66-93 Downloads 16

References

Acar, A., Aksu, H., Uluagac, A. S., & Conti, M. (2018). A survey on homomorphic encryption schemes: Theory and implementation. ACM Computing Surveys (CSUR), 51(4), 1–35. https://doi.org/10.1145/3214303
Ali Sarker, M. R., Hassanuzzaman, M., Biswas, P., Dadon, S. H., Imam, T., & Rahman, T. (2021). An efficient surface map creation and tracking using smartphone sensors and crowdsourcing. Sensors, 21(21), 6969. https://doi.org/10.3390/s21216969
Aoki, S., Jan, L. E., Zhao, J., Bhat, A., Rajkumar, R. R., & Chang, C. F. (2020, October). Co-simulation platform for developing inforich energy-efficient connected and automated vehicles. In 2020 IEEE Intelligent Vehicles Symposium (IV), 1522–1529. IEEE. https://doi.org/10.1109/IV47402.2020.9304664
Babaghayou, M., Chaib, N., Lagraa, N., Ferrag, M. A., & Maglaras, L. (2023). A safety-aware location privacy-preserving IoV scheme with road congestion-estimation in mobile edge computing. Sensors, 23(1), 531. https://doi.org/10.3390/s23010531
Babaghayou, M., Labraoui, N., Ari, A. A. A., Lagraa, N., & Ferrag, M. A. (2020). Pseudonym change-based privacy-preserving schemes in vehicular ad-hoc networks: A survey. Journal of Information Security and Applications, 55, 102618. https://doi.org/10.1016/j.jisa.2020.102618
Benarous, L., & Kadri, B. (2022). Obfuscation-based location privacy-preserving scheme in cloud-enabled internet of vehicles. Peer-to-Peer Networking and Applications, 15(1), 461–472. https://doi.org/10.1007/s12083-021-01233-z
Capponi, A., Fiandrino, C., Kantarci, B., Foschini, L., Kliazovich, D., & Bouvry, P. (2019). A survey on mobile crowdsensing systems: Challenges, solutions, and opportunities. IEEE Communications Surveys & Tutorials, 21(3), 2419–2465. https://doi.org/10.1109/COMST.2019.2914030
Chen, M., Miao, Y., Humar, I., Chen, M., Miao, Y., & Humar, I. (2019). Introduction to OPNET network simulation. OPNET IoT Simulation, 77–153. https://doi.org/10.1007/978-981-32-9170-6_2
El Khatib, R. F., Zorba, N., & Hassanein, H. S. (2019, December). Crowdsensing-based prompt emergency discovery: A sequential detection approach. In 2019 IEEE Global Communications Conference (GLOBECOM), 1–6. IEEE. https://doi.org/10.1109/GLOBECOM38437.2019.9013852
Gao, Z., Huang, Y., Zheng, L., Lu, H., Wu, B., & Zhang, J. (2022). Protecting location privacy of users based on trajectory obfuscation in mobile crowdsensing. IEEE Transactions on Industrial Informatics, 18(9), 6290–6299. https://doi.org/10.1109/TII.2022.3146281
Garg, T., Kagalwalla, N., Churi, P., Pawar, A., & Deshmukh, S. (2020). A survey on security and privacy issues in IoV. International Journal of Electrical & Computer Engineering, 10(5). http://doi.org/10.11591/ijece.v10i5.pp5409-5419
Hou, L., Yao, N., Lu, Z., Zhan, F., & Liu, Z. (2021). Tracking based mix-zone location privacy evaluation in VANET. IEEE Transactions on Vehicular Technology, 70(10), 10957–10969. https://doi.org/10.1109/TVT.2021.3109065
Hou, P., Li, B., Wang, Z., & Ding, H. (2022). Joint hierarchical placement and configuration of edge servers in C-V2X. Ad Hoc Networks, 131, 102842. https://doi.org/10.1016/j.adhoc.2022.102842
Huang, Z., Liu, S., Mao, X., Chen, K., & Li, J. (2017). Insight of the protection for data security under selective opening attacks. Information Sciences, 412, 223–241. https://doi.org/10.1016/j.ins.2017.05.031
Jegadeesan, S., Obaidat, M. S., Vijayakumar, P., & Azees, M. (2021). SEAT: secure and energy efficient anonymous authentication with trajectory privacy-preserving scheme for marine traffic management. IEEE Transactions on Green Communications and Networking, 6(2), 815–824. https://doi.org/10.1109/TGCN.2021.3126618
Jeong, H. H., Shen, Y. C., Jeong, J. P., & Oh, T. T. (2021). A comprehensive survey on vehicular networking for safe and efficient driving in smart transportation: A focus on systems, protocols, and applications. Vehicular Communications, 31, 100349. https://doi.org/10.1016/j.vehcom.2021.100349
Kanumalli, S. S., Ch, A., & Murty, P. S. R. C. (2020). Secure V2V Communication in IOV using IBE and PKI based Hybrid Approach. International Journal of Advanced Computer Science and Applications, 11(1). https://doi.org/10.14569/ijacsa.2020.0110157
Kietzmann, J. H. (2017). Crowdsourcing: A revised definition and introduction to new research. Business horizons, 60(2), 151–153. https://doi.org/10.1016/j.bushor.2016.10.001
Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. https://doi.org/10.1016/j.jnca.2021.103315
Li, H., Pei, L., Liao, D., Zhang, M., Xu, D., & Wang, X. (2020). Achieving privacy protection for crowdsourcing application in edge-assistant vehicular networking. Telecommunication Systems, 75, 1–14. https://doi.org/10.1007/s11235-020-00666-w
Li, H., Liao, D., Sun, G., Zhang, M., Xu, D., & Han, Z. (2018a). Two-stage privacy-preserving mechanism for a crowdsensing-based VSN. IEEE Access, 6, 40682–40695. https://doi.org/10.1109/ACCESS.2018.2854236
Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., & Ye, H. (2018b). Significant permission identification for machine-learning-based android malware detection. IEEE Transactions on Industrial Informatics, 14(7), 3216–3225. https://doi.org/10.1109/TII.2017.2789219
Lin, Y., Wang, P., & Ma, M. (2017, May). Intelligent transportation system (ITS): Concept, challenge and opportunity. In 2017 IEEE 3rd international conference on big data security on cloud (bigdatasecurity), IEEE international conference on high performance and smart computing (HPSC), and IEEE international conference on intelligent data and security (IDS), (pp. 167-172). IEEE. https://doi.org/10.1109/BigDataSecurity.2017.50
Lin, H., Garg, S., Hu, J., Kaddoum, G., Peng, M., & Hossain, M. S. (2020). Blockchain and deep reinforcement learning empowered spatial crowdsourcing in software-defined internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3755–3764. https://doi.org/10.1109/TITS.2020.3025247
Liu, Y., Wang, H., Peng, M., Guan, J., & Wang, Y. (2020). An incentive mechanism for privacy-preserving crowdsensing via deep reinforcement learning. IEEE Internet of Things Journal, 8(10), 8616–8631. https://doi.org/10.1109/JIOT.2020.3047105
Liu, J., Peng, C., Sun, R., Liu, L., Zhang, N., Dustdar, S., & Leung, V. C. (2023). CPAHP: Conditional privacy-preserving authentication scheme with hierarchical pseudonym for 5G-enabled IoV. IEEE Transactions on Vehicular Technology, 72(7), 8929–8940. https://doi.org/10.1109/TVT.2023.3246466
Liu, K., Li, H., Chen, X., Liao, D., Peng, L., & Yurui, L. (2022, October). A privacy protection solution based on data aggregation and batch authentication. In Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond, 85–90. https://doi.org/10.1145/3555661.3560869
Liu, T., Zhu, Y., Yang, Y., & Ye, F. (2016, December). Incentive design for air pollution monitoring based on compressive crowdsensing. In 2016 IEEE Global Communications Conference (GLOBECOM) (pp. 1-6). IEEE. https://doi.org/10.1109/GLOCOM.2016.7841892
Mei, Q., Gül, M., & Shirzad-Ghaleroudkhani, N. (2020). Towards smart cities: Crowdsensing-based monitoring of transportation infrastructure using in-traffic vehicles. Journal of Civil Structural Health Monitoring, 10(4), 653–665. https://doi.org/10.1007/s13349-020-00411-6
Memon, I., Chen, L., Arain, Q. A., Memon, H., & Chen, G. (2018). Pseudonym changing strategy with multiple mix zones for trajectory privacy protection in road networks. International Journal of Communication Systems, 31(1), e3437. https://doi.org/10.1002/dac.3437
Metlo, S., Memon, M. G., Shaikh, F. K., Teevno, M. A., & Talpur, A. (2019). Crowdsource based vehicle tracking system. Wireless Personal Communications, 106(4), 2387–2405. https://doi.org/10.1007/s11277-019-06323-z
Misra, A., Gooze, A., Watkins, K., Asad, M., & Le Dantec, C. A. (2014). Crowdsourcing and its application to transportation data collection and management. Transportation Research Record, 2414(1), 1–8. https://doi.org/10.3141/2414-01
Nandy, T., Idris, M. Y. I., Noor, R. M., Wahab, A. W. A., Bhattacharyya, S., Kolandaisamy, R., & Yahuza, M. (2021). A secure, privacy-preserving, and lightweight Authentication scheme for VANETs. IEEE Sensors Journal, 21(18), 20998–21011. https://doi.org/10.1109/JSEN.2021.3097172
Qian, Y., Ma, Y., Chen, J., Wu, D., Tian, D., & Hwang, K. (2021). Optimal location privacy preserving and service quality guaranteed task allocation in vehicle-based crowdsensing networks. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4367–4375. https://doi.org/10.1109/TITS.2021.3086837
Qureshi, K., & Abdullah, H. (2013). A survey on intelligent transportation systems. Middle East Journal of Scientific Research, 15, 629–642. https://doi.org/10.5829/idosi.mejsr.2013.15.5.11215
Sadiah, S., & Nakanishi, T. (2022). An efficient anonymous reputation system for crowdsensing. Journal of Information Processing, 30, 694–705. https://doi.org/10.2197/ipsjjip.30.694
Song, L., Sun, G., Yu, H., Du, X., & Guizani, M. (2020). Fbia: A fog-based identity authentication scheme for privacy preservation in internet of vehicles. IEEE Transactions on Vehicular Technology, 69(5), 5403–5415. https://doi.org/10.1109/TVT.2020.2977829
Wang, T., Xu, L., Zhang, M., Zhang, H., & Zhang, G. (2022). A new privacy protection approach based on k-anonymity for location-based cloud services. Journal of Circuits, Systems and Computers, 31(05), 2250083. https://doi.org/10.1142/S0218126622500839
Wang, D., Huang, C., Shen, X., & Xiong, N. (2020). A general location-authentication based secure participant recruitment scheme for vehicular crowdsensing. Computer Networks, 171, 107152. https://doi.org/10.1016/j.comnet.2020.107152
Wang, X., Zhang, J., Tian, X., Gan, X., Guan, Y., & Wang, X. (2017). Crowdsensing-based consensus incident report for road traffic acquisition. IEEE Transactions on Intelligent Transportation Systems, 19(8), 2536–2547. https://doi.org/10.1109/TITS.2017.2750169
Wei, H., Wang, J., Jian, M., Mei, S., & Huang, M. (2021, April). Steer-by-Wire Control System Based on Carsim and Simulink. In 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), 1–5. IEEE. https://doi.org/10.1109/IEMTRONICS52119.2021.9422502
Wu, Z., Wang, R., Li, Q., Lian, X., Xu, G., Chen, E., & Liu, X. (2020). A location privacy-preserving system based on query range cover-up or location-based services. IEEE Transactions on Vehicular Technology, 69(5), 5244–5254. https://doi.org/10.1109/TVT.2020.2981633
Xiong, J., Ma, R., Chen, L., Tian, Y., Li, Q., Liu, X., & Yao, Z. (2019). A personalized privacy protection framework for mobile crowdsensing in IIoT. IEEE Transactions on Industrial Informatics, 16(6), 4231–4241. https://doi.org/10.1109/TII.2019.2948068
Yang, X., Tang, L., Niu, L., Zhang, X., & Li, Q. (2018). Generating lane-based intersection maps from crowdsourcing big trace data. Transportation Research Part C: Emerging Technologies, 89, 168–187. https://doi.org/10.1016/j.trc.2018.02.007
Ye, X., Zhu, Y., Zhang, M., & Deng, H. (2023). Differential privacy data release scheme using micro-aggregation with conditional feature selection. IEEE Internet of Things Journal, 10(20), 18302–18314. https://doi.org/10.1109/JIOT.2023.3279440
Zappatore, M., Loglisci, C., Longo, A., Bochicchio, M. A., Vaira, L., & Malerba, D. (2019). Trustworthiness of context-aware urban pollution data in mobile crowd sensing. IEEE Access, 7, 154141–154156. https://doi.org/10.1109/ACCESS.2019.2948757
Zhang, J., Yang, F., Ma, Z., Wang, Z., Liu, X., & Ma, J. (2020a). A decentralized location privacy-preserving spatial crowdsourcing for internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(4), 2299–2313. https://doi.org/10.1109/TITS.2020.3010288
Zhang, C., Zhu, L., Ni, J., Huang, C., & Shen, X. (2020b). Verifiable and privacy-preserving traffic flow statistics for advanced traffic management systems. IEEE Transactions on Vehicular Technology, 69(9), 10336–10347. https://doi.org/10.1109/TVT.2020.3005363
Zhang, C., Zhu, L., Xu, C., Ni, J., Huang, C., & Shen, X. (2021). Location privacy-preserving task recommendation with geometric range query in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(12), 4410–4425. https://doi.org/10.1109/TMC.2021.3080714
Zhang, G., Hou, F., Gao, L., Yang, G., & Cai, L. X. (2022). Nondeterministic-mobility-based incentive mechanism for efficient data collection in crowdsensing. IEEE Internet of Things Journal, 9(23), 23626–23638. https://doi.org/10.1109/JIOT.2022.3190565