Impact of Technology-Enabled Personalization on the Adoption of Mobile Banking An Experimental Study
Main Article Content
Keywords
M-Banking, Experiment, UTAUT, Technology-enabled Personalization, perceived privacy
Abstract
New technologies such as artificial intelligence and Big Data offer an opportunity in terms of personalization of products and services, particularly in mobile banking services. Previous researches have provided mixed results regarding the causal or moderator role of personalization in the adoption of mobile services. This research aims to provide a response to this discordance by using an experimental method in the context of mobile banking services. Results regarding the impact of technology-enabled personalization along with age on the adoption of mobile banking services confirm the causal impact of technology-enabled personalization on facilitating conditions (FC), hedonic motivation (HM), perceived confidentiality (PC), and the intention to use mobile banking. Findings and discussions across age and gender groups could guide future empirical research in this area.
Downloads
References
Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
Albashrawi, M., & Motiwalla, L. (2015). The moderating effect of privacy and personalization in mobile banking: a structural equation modeling analysis. https://aisel.aisnet.org/amcis2015/AdoptionofIT/GeneralPresentations/31
Albashrawi, M., Kartal, H., Oztekin, A., & Motiwalla, L. (2017). The impact of subjective and objective experience on mobile banking usage: An analytical approach. In Proceedings of the of the 50th Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2017.137
Altobishi, T., Erboz, G., & Podruzsik, S. (2018). E-Banking effects on customer satisfaction: The survey on clients in Jordan Banking Sector. International Journal of Marketing Studies, 10(2), 151–161. https://doi.org/10.5539/ijms.v10n2p151
Asif, M. and Krogstie, J., 2013. The role of personalization in mobile service adoption. Proceedings of the International Conference on Multimedia and Human Computer Interaction Toronto, Ontario, Canada, July 18-19 2013 Paper No. 59. https://www.researchgate.net/publication/258847921_Role_of_Personalization_in_Mobile_Services_Adoption#fullTextFileContent
Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Kizgin, H., & Patil, P. (2019). Consumer use of mobile banking (M-Banking) in Saudi Arabia: Towards an integrated model. International Journal of Information Management, 44, 38–52. https://doi.org/10.1016/j.ijinfomgt.2018.09.002
Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice Hall, Englewood Cliffs, NJ, USA.
Benslama, T., & Jallouli, R. (2020). Clustering of Social Media Data and Marketing Decisions. In M. A. Bach Tobji, R. Jallouli, A. Samet, M. Touzani, V. A. Strat, & P. Pocatilu (Eds), Digital Economy. Emerging Technologies and Business Innovation, 53–65. Springer International Publishing. https://doi.org/10.1007/978-3-030-64642-4_5
Blom, J. O., & Monk, A. F. (2003). Theory of personalization of appearance: Why users personalize their PCs and mobile phones. Human-computer interaction, 18(3), 193–228. https://doi.org/10.1207/S15327051HCI1803_1
Casaló, L. V., Flavián, C., & Guinalíu, M. (2007). The role of security, privacy, usability and reputation in the development of online banking. Online information review, 31(5), 583–603. https://doi.org/10.1108/14684520710832315
Cerrato, H. (2012). The meaning of colors. The graphic designer. https://www.yumpu.com/en/document/read/9796080/by-herman-cerrato-the-meaning-of-colors-o-home-landing-page
Chebil, M., Jallouli, R., Bach Tobji, M., & Ben N’cir, C. (2021). Topic Modeling of Marketing Scientific Papers: An Experimental Survey. In Jallouli, R., Bach Tobji, M. A., Mcheick, H., & Piho, G. (eds), Digital Economy. Emerging Technologies and Business Innovation. ICDEc 2021. Lecture Notes in Business Information Processing, vol. 431. Springer, Cham., 147–171. https://doi.org/10.1007/978-3-030-92909-1_10
Cheng, Y., Sharma, S., Sharma, P., & Kulathunga, K. M. M. C. B. (2020). Role of personalization in continuous use intention of Mobile news apps in India: Extending the UTAUT2 model. Information, 11(1), 33. https://doi.org/10.3390/info11010033
Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24–42. https://doi.org/10.1007/s11747-019-00696-0
Dauda, S. Y., & Lee, J. (2015). Technology adoption: A conjoint analysis of consumers’ preference on future online banking services. Information Systems, 53, 1–15. https://doi.org/10.1016/j.is.2015.04.006
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14), 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
Faqih, K. M., & Jaradat, M. I. R. M. (2015). Assessing the moderating effect of gender differences and individualism-collectivism at individual-level on the adoption of mobile commerce technology: TAM3 perspective. Journal of Retailing and Consumer Services, 22, 37–52. https://doi.org/10.1016/j.jretconser.2014.09.006
Fernandez-Lanvin, D., de Andres-Suarez, J., Gonzalez-Rodriguez, M., & Pariente-Martinez, B. (2018). The dimension of age and gender as user model demographic factors for automatic personalization in e-commerce sites. Computer Standards & Interfaces, 59, 1–9. https://doi.org/10.1016/j.csi.2018.02.001
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading. MA: Addison-Wesley. http://worldcat.org/isbn/0201020890
Haq, M. A., & Ghouri, A. M. (2018). Mobile Advertising Technology Acceptance Model (M- TAM): An Extension of TAM in Mobile Marketing Context. South Asian Journal of Management, 12(2), 188–209. https://doi.org/10.21621/sajms.2018122.05
Hariyanti, A. O., Hidayatullah, S., & Prasetya, D. A. (2020). Analysis of the Acceptance and Use of Mobile Banking Services Using the Unified Theory of Acceptance and Use of Technology (Case Study of Bank Jatim Pasuruan Branch). Research Journal of Advanced Engineering and Science, 5(1), 254–262. https://eprints.unmer.ac.id/id/eprint/2956
Hmoud, B. I., & Várallyai, L. (2020). Artificial Intelligence in Human Resources Information Systems: Investigating its Trust and Adoption Determinants. International Journal of Engineering and Management Sciences, 5(1), 749–765. https://doi.org/10.21791/IJEMS.2020.1.65
Ho, S. Y., & Kwok, S. H. (2002). The attraction of personalized service for users in mobile commerce: an empirical study. ACM SIGecom Exchanges, 3(4), 10–18. https://doi.org/10.1145/844351.844354
Hutto, C. J., Bell, C., Farmer, S., Fausset, C., Harley, L., Nguyen, J., & Fain, B. (2015, January). Social media gerontology: Understanding social media usage among older adults. Web intelligence, 13(1), 69–87. https://doi.org/10.3233/WEB-150310
Islam, M. M. (2017). Exploring influencing factors towards intention and use of mobile internet for youth consumers in Bangladesh. Universal Journal of Management, 5(1), 39–47. https://doi.org/10.13189/ujm.2017.050105
Guo, X., Zhang, X., & Sun, Y. (2016). The privacy–personalization paradox in mHealth services acceptance of different age groups. Electronic Commerce Research and Applications, 16, 55–65. https://doi.org/10.1016/j.elerap.2015.11.001
Khemiri, M., & Jallouli, R. (2022). Technology-enabled personalization for mobile banking services: Literature review and theoretical framework. Journal of Telecommunications and the Digital Economy, 10(2), 173-194. https://doi.org/10.18080/jtde.v10n2.545
Krishnaraju, V., Mathew, S. K., & Sugumaran, V. (2016). Web personalization for user acceptance of technology: An empirical investigation of E-government services. Information Systems Frontiers, 18(3), 579-595. https://doi.org/10.1007/s10796-015-9550-9
Krishnaraju, V., Mathew, S. K., & Sugumaran, V. (2013). Role of Web Personalization in Consumer Acceptance of E-Government Services. AMCIS 2013 Proceedings. 2. https://aisel.aisnet.org/amcis2013/eGovernment/GeneralPresentations/2
Kumar, R. L., Smith, M. A., & Bannerjee, S. (2004). User interface features influencing overall ease of use and personalization. Information & Management, 41(3), 289–302. https://doi.org/10.1016/S0378-7206(03)00075-2
Lastner, M. M., Fennell, P., Folse, J. A., Rice, D. H., & Porter III, M. (2019). I guess that is fair: How the efforts of other customers influence buyer price fairness perceptions. Psychology & Marketing, 36(7), 700–715. https://doi.org/10.1002/mar.21206
Laukkanen, T. (2016). Consumer adoption versus rejection decisions in seemingly similar service innovations: The case of the Internet and mobile banking. Journal of Business Research, 69(7), 2432–2439. https://doi.org/10.1016/j.jbusres.2016.01.013
Lee, M. K., Forlizzi, J., Kiesler, S., Rybski, P., Antanitis, J., & Savetsila, S. (2012, March). Personalization in HRI: A longitudinal field experiment. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction, 319–326. https://doi.org/10.1145/2157689.2157804
Malhotra, N., Nunan, D., & Birks, D. (2017). Marketing research: An applied approach. Pearson.
Martins, C., Oliveira, T., & Popovič, A. (2014). Understanding the Internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. International Journal of Information Management, 34(1), 1–13. https://doi.org/10.1016/j.ijinfomgt.2013.06.002
Mohebbi, B. (2014). The art of packaging: An investigation into the role of color in packaging, marketing, and branding. International Journal of Organizational Leadership, 3, 92–102. https://ssrn.com/abstract=3329815
Motiwalla, L. F., Albashrawi, M., & Kartal, H. B. (2019). Uncovering unobserved heterogeneity bias: Measuring mobile banking system success. International Journal of Information Management, 49, 439–451. https://doi.org/10.1016/j.ijinfomgt.2019.07.005
Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International Journal of Information Management, 34(5), 689–703. https://doi.org/10.1016/j.ijinfomgt.2014.06.004
Oyibo, K., Orji, R., & Vassileva, J. (2017, July). The influence of culture in the effect of age and gender on social influence in persuasive technology. In Adjunct publication of the 25th conference on user modeling, adaptation and personalization, pp. 47–52. https://doi.org/10.1145/3099023.3099071
Riegger, A. S., Klein, J. F., Merfeld, K., & Henkel, S. (2021). Technology-enabled personalization in retail stores: Understanding drivers and barriers. Journal of Business Research, 123, 140–155. https://doi.org/10.1016/j.jbusres.2020.09.039
Rogers, E. M (1995). Diffusion of Innovations. Fourth edition. New York: The Free Press. https://doi.org/10.4018/978-1-4666-8156-9.ch016
Rust, R. T. (2020). The future of marketing. International Journal of Research in Marketing, 37(1), 15–26. https://doi.org/10.1016/j.ijresmar.2019.08.002
Saeed, K. A. (2011). Understanding the Adoption of Mobile Banking Services: An Empirical Assessment. AMCIS 2011 Proceedings - All Submissions, 5. https://aisel.aisnet.org/amcis2011_submissions/5
Saeed, M. A. Y., & Bekhet, H. A. (2018). Influencing Factors of Mobile Marketing among Young Malaysian Customers. Australian Journal of Basic and Applied Sciences, 12(9), 63–72. https://doi.org/10.22587/ajbas.2018.12.9.11
Salem, M. Z., Baidoun, S., & Walsh, G. (2019). Factors affecting Palestinian customers’ use of online banking services. International Journal of Bank Marketing, 37(2), 426–451. https://doi.org/10.1108/IJBM-08-2018-0210
Schumacker, R. E., & Lomax, R. G. (2004). A beginner’s guide to structural equation modeling. Psychology Press.
Sheehan, K. B. (1999). An investigation of gender differences in on-line privacy concerns and resultant behaviors. Journal of interactive marketing, 13(4), 24–38. https://doi.org/10.1002/(SICI)1520-6653(199923)13:4<24::AID-DIR3>3.0.CO;2-O
Singh, N., & Srivastava, S. K. (2011). Impact of colors on the psychology of marketing—a comprehensive overview. Management and Labour Studies, 36(2), 199–209. https://doi.org/10.1177/0258042X110360020
Siyal, A. W., Chen, H., Shah, S. J., Shahzad, F., & Bano, S. (2024). Customization at a glance: Investigating consumer experiences in mobile commerce applications. Journal of Retailing and Consumer Services, 76, 103602. https://doi.org/10.1016/j.jretconser.2023.103602
Sung, J., Grinter, R. E., & Christensen, H. I. (2009). “Pimp My Roomba” designing for personalization. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 193–196. https://doi.org/10.1145/1518701.1518732
Taylor, S., & Todd, P. (1995). Assessing IT usage: The role of prior experience. MIS quarterly, 19(4), 561–570. https://doi.org/10.2307/249633
Thompson, R. L., Higgins, C. A., and Howell, J. M. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1), 124–143. https://doi.org/10.2307/249443
Tyrväinen, O., Karjaluoto, H., & Saarijärvi, H. (2020). Personalization and hedonic motivation in creating customer experiences and loyalty in omnichannel retail. Journal of Retailing and Consumer Services, 57, 102233. https://doi.org/10.1016/j.jretconser.2020.102233
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412
Wang, M., Cho, S., & Denton, T. (2017). The impact of personalization and compatibility with past experience on e-banking usage. International Journal of Bank Marketing, 35(1), 45–55. https://doi.org/10.1108/IJBM-04-2015-0046
Wessel, M., & Thies, F. (2015). The Effects of Personalization on Purchase Intentions for Online News: An Experimental Study of Different Personalization Increments. ECIS 2015 Completed Research Papers. Paper 200. ISBN 978-3-00-050284-2. https://aisel.aisnet.org/ecis2015_cr/200
Westin, A. F. (1967). Privacy and Freedom. New York: Atheneum. 1967. Pp. 487. Reviewed by Osborne M. Reynolds, Jr. https://www.jstor.org/stable/40708684
Wijaya, R. R., & Sari, H. (2021, September). Understanding heterogeneity in CRM chatbot user preference. In Proceedings of the Second Asia Pacific International Conference on Industrial Engineering and Operations Management. Surakarta, Indonesia, September 13-16, 2021, IEOM Society International, ISBN: 978-1-7923-6129-6. https://index.ieomsociety.org/index.cfm/article/view/ID/8555
Xu, H., Luo, X. R., Carroll, J. M., & Rosson, M. B. (2011). The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decision Support Systems, 51(1), 42–52. https://doi.org/10.1016/j.dss.2010.11.017
Yapp, E. H., Balakrishna, C., Yeap, J. A., & Ganesan, Y. (2018). Male and female technology users’ acceptance of on-demand services. Global Business and Management Research, 10(1), 105–126. https://www.proquest.com/scholarly-journals/male-female-technology-users-acceptance-on-demand/docview/2131784606/se-2
Zalloum, L., Alghadeer, H., & Nusairat, N. (2019). The Effect of Using Mobile Banking Services Applications on Electronic Word of Mouth: The Mediating Role of Perceived Trust. International Business Research, 12(9), 62–80 https://doi.org/10.5539/ibr.v12n9p62