Archery Analytic Workflow in a Web-Based Application

Main Article Content

Basil Andy Lease https://orcid.org/0000-0001-5469-187X
King Hann Lim https://orcid.org/0000-0002-5679-7747
Jonathan Then Sien Phang
Dar Hung Chiam https://orcid.org/0000-0001-8455-8658

Keywords

Sports analytics, web application, biomechanics, Python Flask framework, archery

Abstract

The integration of sports science and camera sensing technology has recently emerged to be an advanced analytical tool in sportsperson performance enhancement. The use of computing power and a web-based application can provide quick information analysis and data reporting between coaches and athletes. The design of an archery analytic workflow is demonstrated in this paper using the Python Flask framework, video analytic algorithms, a structured video inventory framework, MongoDB database setup and integration of the Keypoint R-CNN machine learning backend. A user-friendly data visualisation interface on the front end is integrated in the software to deliver athletes’ analytical capabilities such as thorough frame-by-frame video analysis, posture consistency estimation and joint kinematic analysis. This web application framework is not limited to archery sports, and can be extended to numerous sports, such as shooting, weightlifting and cycling. The significance of integrating camera sensing technology with the sports science field can offer quantitative and qualitative observations to improve training programs and performance evaluation.


 

Downloads

Download data is not yet available.
Abstract 119 | 946-PDF-v12n2pp101-114 Downloads 1

References

Bootstrap. (2023). Bootstrap 5.3. Retrieved March 16, 2024, from https://getbootstrap.com
Charmant, J. (n.d.). Kinovea. Retrieved March 18, 2024, from https://www.kinovea.org
Chiam, D. H., Phang, J. T. S., Lim, K. H., & Lease, B. A. (2023). Study of archery shooting phases using joint angle profile. In 2023 International Conference on Digital Applications, Transformation & Economy (ICDATE), 1–5. https://doi.org/10.1109/ICDATE58146.2023.10248617
Dartfish. (n.d.). MyDartfish Express mobile. Retrieved March 18, 2024, from https://www.dartfish.com/mobile
Du, M., & Yuan, X. (2021). A survey of competitive sports data visualization and visual analysis. Journal of Visualization, 24(1), 47–67. https://doi.org/10.1007/s12650-020-00687-2
Eitzen, I., Renberg, J., & Færevik, H. (2021). The use of wearable sensor technology to detect shock impacts in sports and occupational settings: A scoping review. Sensors, 21(15), 4962. https://doi.org/10.3390/s21154962
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, 2961–2969. https://doi.org/10.48550/arXiv.1703.06870
Jochen & Patrick. (n.d.). RyngDyng technology. Retrieved March 18, 2024, from https://www.archery-electronics.com/en/public/ryngdyng/technology
Lau, J. S., Ghafar, R., Zulkifli, E. Z., Hashim, H. A., & Krasilshchikov, O. (2020). A systematic review of Malaysian archery biomechanics research. Theory and Methods of Physical Education and Sports, (3), 91–96. https://doi.org/10.32652/tmfvs.2020.3.91-96
Lease, B. A., Phang, J. T. S., Chiam, D. H., & Lim, K. H. (2022). Online bio-mechanical evaluation system for posture assessment and correction. In 2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Malaysia, (243–247). https://doi.org/10.1109/GECOST55694.2022.10010674
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V (Vol. 13, 740–755). https://doi.org/10.1007/978-3-319-10602-1_48
MongoDB. (2024). What is MongoDB? Retrieved March 10, 2024, from https://www.mongodb.com/docs/manual
Morgulev, E., Azar, O. H., & Lidor, R. (2018). Sports analytics and the big-data era. International Journal of Data Science and Analytics, 5(4), 213–222. https://doi.org/10.1007/s41060-017-0093-7
Onform. (n.d.). The ultimate mobile video coaching platform in lessons at practice and remote. Retrieved May 30, 2024, from https://www.onform.com
Pallets Projects. (2023). Flask. Retrieved March 16, 2024, from https://palletsprojects.com/p/flask
Richter, C., O’Reilly, M., & Delahunt, E. (2021). Machine learning in sports science: Challenges and opportunities. Sports Biomechanics, 20(6), 1–7. https://doi.org/10.1080/14763141.2021.1910334
Seshadri, D. R., Li, R. T., Voos, J. E., Rowbottom, J. R., Alfes, C. M., Zorman, C. A., & Drummond, C. K. (2019). Wearable sensors for monitoring the physiological and biochemical profile of the athlete. NPJ Digital Medicine, 2(1), 72. https://doi.org/10.1038/s41746-019-0150-9
Soong, D. (n.d.). Archery vision. Retrieved March 18, 2024, from https://www.archeryvision.com
Taborri, J., Keogh, J., Kos, A., Santuz, A., Umek, A., Urbanczyk, C., van der Kruk, E., & Rossi, S. (2020). Sport biomechanics applications using inertial, force, and EMG sensors: A literature overview. Applied Bionics and Biomechanics, Volume 2020, Article 2041549. https://doi.org/10.1155/2020/2041549
Vendrame, E., Belluscio, V., Truppa, L., Rum, L., Lazich, A., Bergamini, E., & Mannini, A. (2022). Performance assessment in archery: A systematic review. Sports Biomechanics, 21(1), 1–23. https://doi.org/10.1080/14763141.2022.2049357
Yuan, C., Yang, Y., & Liu, Y. (2021). Sports decision-making model based on data mining and neural network. Neural Computing & Applications, 33, 3911–3924. https://doi.org/10.1007/s00521-020-05445-x

Most read articles by the same author(s)